Ground Definitions: Block 0 Passive Sort Tables

Back

Arrays

Block 0 Passive / Block 7 Passive

Click Column and Block Headings to sort

Diagonal Condition 111 110 101 100 011 010 001 000
Rule Left Right Center 7 6 5 4 3 2 1 0
000 P P P
002 Single P P 1
004 P P A 1
006 Step P AP 1 1
008 P P P 1
010 Single P P 1 1
012 P P A 1 1
014 Dbl P AP 1 1 1
016 P Single P 1
018 Single Single P 1 1
020 P Step AP 1 1
022 Step Step AP 1 1 1
024 P Single P 1 1
026 Single Single P 1 1 1
028 P Step A 1 1 1
030 Dbl Step Mix 1 1 1 1
032 P P P 1
034 Single P P 1 1
036 P P A 1 1
038 Step P AP 1 1 1
040 P P P 1 1
042 Single P P 1 1 1
044 P P A 1 1 1
046 Dbl P AP 1 1 1 1
048 P Single P 1 1
050 Single Single Mix 1 1 1
052 P Step AP 1 1 1
054 Step Step Mix 1 1 1 1
056 P Single P 1 1 1
058 Single Single Mix 1 1 1 1
060 P Step A 1 1 1 1
062 Dbl Step Mix 1 1 1 1 1
064 P P P 1
066 Single P P 1 1
068 P P A 1 1
070 Step P A 1 1 1
072 P P P 1 1
074 Single P P 1 1 1
076 P P A 1 1 1
078 Dbl P A 1 1 1 1
080 P Single P 1 1
082 Single Single P 1 1 1
084 P Dbl AP 1 1 1
086 Step Dbl Mix 1 1 1 1
088 P Single P 1 1 1
090 Single Single P 1 1 1 1
092 P Dbl A 1 1 1 1
094 Dbl Dbl AP 1 1 1 1 1
096 P P P 1 1
098 Single P P 1 1 1
100 P P A 1 1 1
102 Step P A 1 1 1 1
104 P P P 1 1 1
106 Single P P 1 1 1 1
108 P P A 1 1 1 1
110 Dbl P A 1 1 1 1 1
112 P Single P 1 1 1
114 Single Single Mix 1 1 1 1
116 P Dbl AP 1 1 1 1
118 Step Dbl Mix 1 1 1 1 1
120 P Single P 1 1 1 1
122 Single Single Mix 1 1 1 1 1
124 P Dbl A 1 1 1 1 1
126 Dbl Dbl Mix 1 1 1 1 1 1

Block 0 Passive / Block 7 Passive

Click Column and Block Headings to sort

Diagonal Condition 111 110 101 100 011 010 001 000
Rule Left Right Center 7 6 5 4 3 2 1 0
128 P P P 1
130 Single P P 1 1
132 P P A 1 1
134 Step P AP 1 1 1
136 P P P 1 1
138 Single P P 1 1 1
140 P P A 1 1 1
142 Dbl P AP 1 1 1 1
144 P Single P 1 1
146 Single Single P 1 1 1
148 P Step AP 1 1 1
150 Step Step A 1 1 1 1
152 P Single P 1 1 1
154 Single Single P 1 1 1 1
156 P Step A 1 1 1 1
158 Dbl Step Mix 1 1 1 1 1
160 P P P 1 1
162 Single P P 1 1 1
164 P P A 1 1 1
166 Step P P 1 1 1 1
168 P P P 1 1 1
170 Single P P 1 1 1 1
172 P P A 1 1 1 1
174 Dbl P AP 1 1 1 1 1
176 P Single P 1 1 1
178 Single Single Mix 1 1 1 1
180 P Step AP 1 1 1 1
182 Step Step A 1 1 1 1 1
184 P Single P 1 1 1 1
186 Single Single Mix 1 1 1 1 1
188 P Step A 1 1 1 1 1
190 Dbl Step Mix 1 1 1 1 1 1
192 P P P 1 1
194 Single P P 1 1 1
196 P P A 1 1 1
198 Step P A 1 1 1 1
200 P P P 1 1 1
202 Single P P 1 1 1 1
204 P P A 1 1 1 1
206 Dbl P A 1 1 1 1 1
208 P Single P 1 1 1
210 Single Single P 1 1 1 1
212 P Dbl P 1 1 1 1
214 Step Dbl Mix 1 1 1 1 1
216 P Single P 1 1 1 1
218 Single Single P 1 1 1 1 1
220 P Dbl A 1 1 1 1 1
222 Dbl Dbl A 1 1 1 1 1 1
224 P P P 1 1 1
226 Single P P 1 1 1 1
228 P P A 1 1 1 1
230 Step P A 1 1 1 1 1
232 P P P 1 1 1 1
234 Single P P 1 1 1 1 1
236 P P A 1 1 1 1 1
238 Dbl P A 1 1 1 1 1 1
240 P Single P 1 1 1 1
242 Single Single Mix 1 1 1 1 1
244 P Dbl AP 1 1 1 1 1
246 Step Dbl Mix 1 1 1 1 1 1
248 P Single P 1 1 1 1 1
250 Single Single Mix 1 1 1 1 1 1
252 P Dbl A 1 1 1 1 1 1
254 Dbl Dbl A 1 1 1 1 1 1 1
 

Arrays

Back

Block 0 Passive All

  • All (128 patterns) = array(000, 002, 004, 006, 008, 010, 012, 014, 016, 018, 020, 022, 024, 026, 028, 030, 032, 034, 036, 038, 040, 042, 044, 046, 048, 050, 052, 054, 056, 058, 060, 062, 064, 066, 068, 070, 072, 074, 076, 078, 080, 082, 084, 086, 088, 090, 092, 094, 096, 098, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 246, 248, 250, 252, 254);
  • Diagonals: Active or passive
    • Both diagonals passive (32 patterns) = array(000, 004, 008, 012, 032, 036, 040, 044, 064, 068, 072, 076, 096, 100, 104, 108, 128, 132, 136, 140, 160, 164, 168, 172, 192, 196, 200, 204, 224, 228, 232, 236);
    • Left diagonal active, right passive
      • Single diagonal (16 patterns) = array(002, 010, 034, 042, 066, 074, 098, 106, 130, 138, 162, 170, 194, 202, 226, 234);
      • Stepped diagonal (8 patterns) = array(006, 038, 070, 102, 134, 166, 198, 230);
      • Double-line diagonal (8 patterns) = array(014, 046, 078, 110, 142, 174, 206, 238);
    • Right diagonal active, left passive
      • Single diagonal (8 patterns) = array(016, 024, 048, 056, 080, 088, 112, 120, 144, 152, 176, 184, 208, 216, 240, 248);
      • Stepped diagonal (8 patterns) = array(020, 028, 052, 060, 148, 156, 180, 188);
      • Double-line diagonal (8 patterns) = array(084, 092, 116, 124, 212, 220, 244, 252);
    • Both diagonals active
      • Single diagonal, both sides (16 patterns) = array(018, 026, 050, 058, 082, 090, 114, 122, 146, 154, 178, 186, 210, 218, 242, 250);
      • Stepped diagonal, both sides (4 patterns) = array(022, 054, 150, 182);
      • Double-line diagonal, both sides (4 patterns) = array(094, 126, 222, 254);
      • Stepped/double-line diagonal (8 patterns) = array(030, 062, 086, 118, 158, 190, 214, 246);
  • Center Column
    • Passive (56 patterns) = array(000, 002, 008, 010, 016, 018, 024, 026, 032, 034, 040, 042, 048, 056, 064, 066, 072, 074, 080, 082, 088, 090, 096, 098, 104, 106, 112, 120, 128, 130, 136, 138, 144, 146, 152, 154, 160, 162, 168, 170, 176, 184, 192, 194, 200, 202, 208, 210, 216, 218, 224, 226, 232, 234, 240, 248);
    • Passive, first cell active (17 patterns) = array(006, 014, 020, 038, 046, 052, 084, 094, 116, 134, 142, 148, 166, 174, 180, 212, 244);
    • Mixed (19 patterns) = array(022, 030, 050, 054, 058, 062, 086, 114, 118, 122, 124, 158, 178, 186, 190, 214, 242, 246, 250);
    • Active (36 patterns) = array(004, 012, 028, 036, 044, 060, 068, 070, 076, 078, 092, 100, 102, 108, 100, 124, 132, 140, 150, 156, 164, 172, 182, 188, 196, 198, 204, 206, 220, 222, 228, 230, 236, 238, 252, 254);

Block 0 Passive Block 7 Passive

  • All (64 patterns) = array(000, 002, 004, 006, 008, 010, 012, 014, 016, 018, 020, 022, 024, 026, 028, 030, 032, 034, 036, 038, 040, 042, 044, 046, 048, 050, 052, 054, 056, 058, 060, 062, 064, 066, 068, 070, 072, 074, 076, 078, 080, 082, 084, 086, 088, 090, 092, 094, 096, 098, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126);
  • Diagonals: Active or passive
    • Both diagonals passive (16 patterns) = array(000, 004, 008, 012, 032, 036, 040, 044, 064, 068, 072, 076, 096, 100, 104, 108);
    • Left diagonal active, right passive
      • Single diagonal (8 patterns) = array(002, 010, 034, 042, 066, 074, 098, 106);
      • Stepped diagonal (4 patterns) = array(006, 038, 070, 102);
      • Double-line diagonal (4 patterns) = array(014, 046, 078, 110);
    • Right diagonal active, left passive
      • Single diagonal (8 patterns) = array(016, 024, 048, 056, 080, 088, 112, 120);
      • Stepped diagonal (4 patterns) = array(020, 028, 052, 060);
      • Double-line diagonal (4 patterns) = array(084, 092, 116, 124);
    • Both diagonals active
      • Single diagonal, both sides (8 patterns) = array(018, 026, 050, 058, 082, 090, 114, 122);
      • Stepped diagonal, both sides (2 patterns) = array(022, 054);
      • Double-line diagonal, both sides (2 patterns) = array(094, 126);
      • Stepped/double-line diagonal (4 patterns) = array(030, 062, 086, 118);
  • Center Column
    • Passive (28 patterns) = array(000, 002, 008, 010, 016, 018, 024, 026, 032, 034, 040, 042, 048, 056, 064, 066, 072, 074, 080, 082, 088, 090, 096, 098, 104, 106, 112, 120);
    • Passive, first cell active (9 patterns) = array(006, 014, 020, 038, 046, 052, 084, 094, 116);
    • Mixed (11 patterns) = array(022, 030, 050, 054, 058, 062, 086, 114, 118, 122, 124);
    • Active (16 patterns) = array(004, 012, 028, 036, 044, 060, 068, 070, 076, 078, 092, 100, 102, 108, 100, 124)

Block 0 Passive Block 7 Active

  • All (64 patterns) = array(128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 246, 248, 250, 252, 254);
  • Diagonals: Active or passive
    • Both diagonals passive (16 patterns) = array(128, 132, 136, 140, 160, 164, 168, 172, 192, 196, 200, 204, 224, 228, 232, 236);
    • Left diagonal active, right passive
      • Single diagonal (8 patterns) = array(130, 138, 162, 170, 194, 202, 226, 234);
      • Stepped diagonal (4 patterns) = array(134, 166, 198, 230);
      • Double-line diagonal (4 patterns) = array(142, 174, 206, 238);
    • Right diagonal active, left passive
      • Single diagonal (8 patterns) = array(144, 152, 176, 184, 208, 216, 240, 248);
      • Stepped diagonal (4 patterns) = array(148, 156, 180, 188);
      • Double-line diagonal (4 patterns) = array(212, 220, 244, 252);
    • Both diagonals active
      • Single diagonal, both sides (8 patterns) = array(146, 154, 178, 186, 210, 218, 242, 250);
      • Stepped diagonal, both sides (2 patterns) = array(150, 182);
      • Double-line diagonal, both sides (2 patterns) = array(222, 254);
      • Stepped/double-line diagonal (4 patterns) = array(158, 190, 214, 246);
  • Center Column
    • Passive (28 patterns) = array(128, 130, 136, 138, 144, 146, 152, 154, 160, 162, 168, 170, 176, 184, 192, 194, 200, 202, 208, 210, 216, 218, 224, 226, 232, 234, 240, 248);
    • Passive, first cell active (8 patterns) = array(134, 142, 148, 166, 174, 180, 212, 244);
    • Mixed (8 patterns) = array(158, 178, 186, 190, 214, 242, 246, 250);
    • Active (20 patterns) = array(132, 140, 150, 156, 164, 172, 182, 188, 196, 198, 204, 206, 220, 222, 228, 230, 236, 238, 252, 254);