Ground Definitions: Block 0 Active Sort Tables

Back

Arrays

Block 0 Active / Block 7 Passive

Click Column and Block Headings to sort

Start Condition
0 = PPA
1 = PAP
2 = APA
Diagonal Condition 111 110 101 100 011 010 001 000
Rule Left Right Left Right 7 6 5 4 3 2 1 0
001 0 0 P P 1
003 2 0 P Steep 1 1
005 0 0 P P 1 1
007 2 0 P P 1 1 1
009 0 1 P A 1 1
011 2 1 P A 1 1 1
013 0 1 P A 1 1 1
015 2 1 P A 1 1 1 1
017 0 2 Steep P 1 1
019 2 2 P P 1 1 1
021 0 2 P P 1 1 1
023 2 2 P P 1 1 1 1
025 0 2 P Steep 1 1 1
027 2 2 P Steep 1 1 1 1
029 0 2 P P 1 1 1 1
031 2 2 P P 1 1 1 1 1
033 0 0 P P 1 1
035 2 0 P Steep 1 1 1
037 0 0 P P 1 1 1
039 2 0 P Steep 1 1 1 1
041 0 1 P A 1 1 1
043 2 1 P A 1 1 1 1
045 0 1 Steep A 1 1 1 1
047 2 1 P A 1 1 1 1 1
049 0 2 Steep P 1 1 1
051 2 2 P P 1 1 1 1
053 0 2 Steep P 1 1 1 1
055 2 2 P P 1 1 1 1 1
057 0 2 Steep Steep 1 1 1 1
059 2 2 P Steep 1 1 1 1 1
061 0 2 Steep P 1 1 1 1 1
063 2 2 P P 1 1 1 1 1 1
065 1 0 A P 1 1
067 2 0 Steep P 1 1 1
069 1 0 A P 1 1 1
071 2 0 P P 1 1 1 1
073 1 1 A A 1 1 1
075 2 1 Steep A 1 1 1 1
077 1 1 A A 1 1 1 1
079 2 1 P A 1 1 1 1 1
081 1 2 A P 1 1 1
083 2 2 Steep P 1 1 1 1
085 1 2 A P 1 1 1 1
087 2 2 P P 1 1 1 1 1
089 1 2 A Steep 1 1 1 1
091 2 2 P P 1 1 1 1 1
093 1 2 A P 1 1 1 1 1
095 2 2 P P 1 1 1 1 1 1
097 1 0 A P 1 1 1
099 2 0 Steep Steep 1 1 1 1
101 1 0 A Steep 1 1 1 1
103 2 0 P Steep 1 1 1 1 1
105 1 1 A A 1 1 1 1
107 2 1 P A 1 1 1 1 1
109 1 1 A A 1 1 1 1 1
111 2 1 P A 1 1 1 1 1 1
113 1 2 A P 1 1 1 1
115 2 2 Steep P 1 1 1 1 1
117 1 2 A P 1 1 1 1 1
119 2 2 P P 1 1 1 1 1 1
121 1 2 A P 1 1 1 1 1
123 2 2 P P 1 1 1 1 1 1
125 1 2 A P 1 1 1 1 1 1
127 2 2 P P 1 1 1 1 1 1 1

Block 0 Active / Block 7 Active

Click Column and Block Headings to sort

 
 
 
 
111 110 101 100 011 010 001 000
Rule Left Right Center 7 6 5 4 3 2 1 0
129 P P Mix 1 1
131 A P Mix 1 1 1
133 P P A 1 1 1
135 A P Mix 1 1 1 1
137 P AP Mix 1 1 1
139 A AP PA 1 1 1 1
141 P AP A 1 1 1 1
143 A AP PA 1 1 1 1 1
145 P A Mix 1 1 1
147 A A Mix 1 1 1 1
149 P A Mix 1 1 1 1
151 A A A 1 1 1 1 1
153 P A P 1 1 1 1
155 A A PA 1 1 1 1 1
157 P A A 1 1 1 1 1
159 A A A 1 1 1 1 1 1
161 P P Mix 1 1 1
163 A P Mix 1 1 1 1
165 P P A 1 1 1 1
167 A P Mix 1 1 1 1 1
169 P AP PA 1 1 1 1
171 A AP PA 1 1 1 1 1
173 P AP A 1 1 1 1 1
175 A AP PA 1 1 1 1 1 1
177 P A Mix 1 1 1 1
179 A A Mix 1 1 1 1 1
181 P A Mix 1 1 1 1 1
183 A A A 1 1 1 1 1 1
185 P A PA 1 1 1 1 1
187 A A PA 1 1 1 1 1 1
189 P A A 1 1 1 1 1 1
191 A A A 1 1 1 1 1 1 1
193 AP P Mix 1 1 1
195 A P P 1 1 1 1
197 AP P A 1 1 1 1
199 A P A 1 1 1 1 1
201 AP AP Mix 1 1 1 1
203 A AP P 1 1 1 1 1
205 AP AP A 1 1 1 1 1
207 A AP A 1 1 1 1 1 1
209 AP A PA 1 1 1 1
211 A A PA 1 1 1 1 1
213 AP A PA 1 1 1 1 1
215 A A A 1 1 1 1 1 1
217 AP A P 1 1 1 1 1
219 A A P 1 1 1 1 1 1
221 AP A A 1 1 1 1 1 1
223 A A A 1 1 1 1 1 1 1
225 AP P PA 1 1 1 1
227 A P PA 1 1 1 1 1
229 AP P A 1 1 1 1 1
231 A P A 1 1 1 1 1 1
233 AP AP PA 1 1 1 1 1
235 A AP AP 1 1 1 1 1 1
237 AP AP A 1 1 1 1 1 1
239 A AP A 1 1 1 1 1 1 1
241 AP A PA 1 1 1 1 1
243 A A PA 1 1 1 1 1 1
245 AP A PA 1 1 1 1 1 1
247 A A A 1 1 1 1 1 1 1
249 AP A PA 1 1 1 1 1 1
251 A A PA 1 1 1 1 1 1 1
253 AP A A 1 1 1 1 1 1 1
255 A A A 1 1 1 1 1 1 1 1
 

Arrays

Back

Block 0 Active / Block 7 Passive

  • All (64 patterns) = array(001, 003, 005, 007, 009, 011, 013, 015, 017, 019, 021, 023, 025, 027, 029, 031, 033, 035, 037, 039, 041, 043, 045, 047, 049, 051, 053, 055, 057, 059, 061, 063, 065, 057, 069, 071, 073, 075, 077, 079, 081, 083, 085, 087, 089, 091, 093, 095, 097, 099, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127);
  • Diagonal Start Conditions
    • Both diagonal APA: Active Passive Active (16 patterns) = array(019, 023, 027, 031, 051, 055, 059, 063, 083, 087, 091, 095, 115, 119, 123, 127);
    • Both diagonal PAP: Passive Active Passive (4 patterns) = array(073, 077, 105,109);
    • Both diagonal PPA: Passive Passive Active (4 patterns) = array(001, 005, 033, 037);
    • Left APA, Right PAP (8 patterns) = array(011, 015, 043, 047, 075, 079, 107, 111);
    • Left APA, Right PPA (8 patterns) = array(003, 007, 035, 039, 067, 071, 099, 103);
    • Left PAP, Right APA (8 patterns) = array(081, 085, 089, 093, 113, 117, 121, 125);
    • Left PAP, Right PPA (4 patterns) = array(065, 069, 097, 101);
    • Left PPA, Right APA (8 patterns) = array(017, 021, 025, 029, 049, 053, 057, 061);
    • Left PPA, Right PAP (8 patterns) = array(009, 013, 041, 045);
  • Diagonal Type
    • Both Active (4 patterns) = array(073, 077, 105, 109);
    • Left Active, Right Passive (12 patterns) = array(065, 069, 081, 085, 089, 093, 097, 101, 113, 117, 121, 125);
    • Left Passive, Right Active (12 patterns) = array(009, 011, 013, 015, 041, 043, 045, 047, 075, 079, 107, 111);
    • Both Passive (36 patterns) = array(001, 003, 005, 007, 017, 019, 021, 023, 025, 027, 029, 031, 033, 035, 037, 039, 049, 051, 053, 055, 057, 059, 061, 063, 067, 071, 083, 087, 091, 095, 099, 103, 115, 119, 123, 127);
  • Steep Diagonals
    • Both Active, both diagonals passive (2 patterns) = array(057, 099);
    • Left Active, both diagonals passive (7 patterns) = array(017, 049, 053, 061, 067, 083, 115);
    • Left Active, right diagonal active (2 patterns) = array(045, 075);
    • Right Active, both diagonals passive (7 patterns) = array(003, 025, 027, 035, 039, 059, 103);
    • Right Active, left diagonal active (2 patterns) = array(089, 101);

Block 0 Active / Block 7 Active

  • All (64 patterns): array(129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255);
  • Both Diagonals Active (36 patterns): array(139, 143, 147, 151, 155, 159, 171, 175, 179, 183, 187, 191, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255);
    • Row 1 cell both passive (4 patterns): array(201, 205, 233, 237);
    • Row 1 cell left passive (8 patterns): array(209, 213, 217, 221, 241, 245, 249, 253);
    • Row 1 cell right passive (8 patterns): array(139, 143, 171, 175, 203, 207, 235, 239);
  • Left Diagonal Active (12 patterns): array(131, 135, 163, 167, 193, 195, 197, 199, 225, 227, 229, 231);
    • Row 1 cell left passive (4 patterns): array(193, 197, 225, 229);
  • Right Diagonal Active (12 patterns): array(137, 141, 145, 149, 153, 157, 169, 173, 177, 181, 185, 189);
    • Row 1 cell right passive (4 patterns): array(137, 141, 169, 173);
  • Both Diagonals Passive (4 patterns): array(129, 133, 161, 165);